博客
关于我
对embedding的理解
阅读量:553 次
发布时间:2019-03-09

本文共 288 字,大约阅读时间需要 1 分钟。

在深度学习领域,向量常被用来描述输入数据的特征。这种需求在自然语言处理(NLP)和计算机视觉(CV)中尤为突出。在NLP应用中,一个完整的句子会被分解为单个词,每一个单词都有一个对应的 embedding 向量,用来表示该单词在语义上的特性。在计算机视觉中,输入一张图片后,系统会对其中的不同区域或对象进行分割,每个区域都能得到一个 embedding 向量来表示其特征特征表示。嵌入向量的核心作用在于,将输入的高维数据(如词向量或图像向量)映射到一个相对低维但仍能捕捉实体信息的嵌入空间,使得复杂的特征关系能够以更简洁的方式表达和计算。这种方法在特征提取方面具有显著的优势。

转载地址:http://ljmsz.baihongyu.com/

你可能感兴趣的文章
Nim游戏
查看>>
NIO ByteBuffer实现原理
查看>>
Nio ByteBuffer组件读写指针切换原理与常用方法
查看>>
NIO Selector实现原理
查看>>
nio 中channel和buffer的基本使用
查看>>
NIO三大组件基础知识
查看>>
NIO与零拷贝和AIO
查看>>
NIO同步网络编程
查看>>
NIO基于UDP协议的网络编程
查看>>
NIO笔记---上
查看>>
NIO蔚来 面试——IP地址你了解多少?
查看>>
NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
查看>>
NISP国家信息安全水平考试,收藏这一篇就够了
查看>>
NIS服务器的配置过程
查看>>
Nitrux 3.8 发布!性能全面提升,带来非凡体验
查看>>
NiuShop开源商城系统 SQL注入漏洞复现
查看>>
NI笔试——大数加法
查看>>
NLog 自定义字段 写入 oracle
查看>>
NLog类库使用探索——详解配置
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>