博客
关于我
对embedding的理解
阅读量:553 次
发布时间:2019-03-09

本文共 288 字,大约阅读时间需要 1 分钟。

在深度学习领域,向量常被用来描述输入数据的特征。这种需求在自然语言处理(NLP)和计算机视觉(CV)中尤为突出。在NLP应用中,一个完整的句子会被分解为单个词,每一个单词都有一个对应的 embedding 向量,用来表示该单词在语义上的特性。在计算机视觉中,输入一张图片后,系统会对其中的不同区域或对象进行分割,每个区域都能得到一个 embedding 向量来表示其特征特征表示。嵌入向量的核心作用在于,将输入的高维数据(如词向量或图像向量)映射到一个相对低维但仍能捕捉实体信息的嵌入空间,使得复杂的特征关系能够以更简洁的方式表达和计算。这种方法在特征提取方面具有显著的优势。

转载地址:http://ljmsz.baihongyu.com/

你可能感兴趣的文章
Netty源码—5.Pipeline和Handler一
查看>>
Netty源码—6.ByteBuf原理二
查看>>
Netty源码—7.ByteBuf原理三
查看>>
Netty源码—7.ByteBuf原理四
查看>>
Netty源码—8.编解码原理二
查看>>
Netty源码解读
查看>>
Netty的Socket编程详解-搭建服务端与客户端并进行数据传输
查看>>
Netty相关
查看>>
Network Dissection:Quantifying Interpretability of Deep Visual Representations(深层视觉表征的量化解释)
查看>>
Network Sniffer and Connection Analyzer
查看>>
NetworkX系列教程(11)-graph和其他数据格式转换
查看>>
Networkx读取军械调查-ITN综合传输网络?/读取GML文件
查看>>
Net与Flex入门
查看>>
net包之IPConn
查看>>
NFinal学习笔记 02—NFinalBuild
查看>>
NFS共享文件系统搭建
查看>>
nfs复习
查看>>
NFS网络文件系统
查看>>
nft文件传输_利用remoting实现文件传输-.NET教程,远程及网络应用
查看>>
ng 指令的自定义、使用
查看>>